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Abstract
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1 Introduction

Generation, transmission, and distribution costs for electric utilities are expected to rise

in the coming years. Spurred by federal clean-energy investment tax credits and aggres-

sive new state regulatory mandates to reduce carbon emissions, utilities are retiring coal

and oil electricity plants and investing in cleaner sources of power including wind and solar

generation (Borenstein, 2012; Borenstein and Kellogg, 2023). Utilities are also moderniz-

ing their transmission and distribution systems to support the integration of renewables,

to improve the reliability of energy delivery, and to enhance system resiliency against ad-

verse weather events or other natural disasters such as wildfires and earthquakes (USEIA,

2021). Meanwhile, robust worldwide demand for oil and natural gas has coincided with

increased international conflict to further elevate energy costs to utilities. Simultaneously,

governments have implemented policies to move energy consumption increasingly toward

electrification, most notably encouraging the adoption of electric vehicles.

These developments are likely to affect households in the form of higher and more

volatile utility energy bills (USEIA, 2022). As a result, unexpectedly high bills or “bill

shocks” may become endemic because many households often cannot or do not track their

energy consumption, only learning about their expenses after receiving a monthly bill.1 Bill

shocks are more than an annoyance; they can be particularly deleterious for the poor, forcing

economically insecure households to reduce expenditures on other goods and services such

as food, housing, and medical care to pay utility bills and “to keep the lights on” (Tuttle and

Beatty, 2017; Drehobl et al., 2020; Kontokosta et al., 2020).

A possibly fortuitous development with respect to the increasing prevalence of bill shocks

is that many utilities have upgraded their metering infrastructure in recent years. These

upgrades have the potential to enable households to have better access to information on

their usage and expenditures and avoid unexpected surprises that exacerbate difficult trade-

offs for household budgets. Most notably, “smart meters,” which are digital meters that

replace traditional mechanical meters, can measure and communicate usage data at high

1A small number of U.S. utilities have experimented with pre-payment plans, which provide the customer
with real-time information about their energy consumption. However, pre-payment plans are much more
common outside the United States, particularly in the developing world (Jack and Smith, 2020).
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frequencies. The appeal to households of this enhanced information flow for managing en-

ergy expenditures was reflected in a 2008 report prepared for the US DOE, which reported

that “the Smart Grid will empower average energy consumers to a degree unimaginable

just a few years ago. Given new awareness, understanding and tools, they’ll be able to make

choices that save money, enhance personal convenience, improve the environment – or all

three (Litos Strategic Communication, 2008).”2

The prospect of empowering consumers and enhancing informational flows have justified

billions of dollars of public investment in smart meters over the recent decades.3 These in-

vestments have been effective at increasing deployment of smart meters. Estimates indicate

that nearly 80% of U.S. households had smart meters by the end of 2022 (Edison Founda-

tion, 2022). Unfortunately, despite claims about the benefits of smart meters for consumers

and the widespread deployment of smart meters, the benefits of smart meters appear to

be largely untapped by utilities, who are often ill-equipped to leverage the volumes of data

provided by the meters or provide access to it to their consumers and, as a result, have of-

ten deactivated data-sharing features on smart meters (Mission Data, 2022). Reflecting the

untapped potential of smart meters, List et al. (2018) present evidence that the installation

of smart meters has not led to statistically significant changes in energy usage for either

electricity or natural gas.

Motivated by recent household and regulator concerns about bill shocks and the under-

utilization of smart meter investments, this paper focuses on a new energy management

tool which may tap the potential offered by smart meter investments: high bill alert (HBA)

programs. HBA programs alert consumers to unusually large increases in their usage part

way through their bill cycle. The alert gives households the opportunity to adjust their en-

ergy usage before a bill shock is fully realized, thereby limiting the negative consequences

of wasteful or low-value energy expenditures. HBA programs are a new tool but may be-

come as ubiquitous in the utility sector as other commonly adopted behavioral programs,

2The opportunity to avoid unexpected bill shocks was further highlighted in Energy.gov article that focused
on unusually large electric bills occurring due to undetected equipment failures or malfunctions, concluding
that “these types of problems can be avoided through the smart grid (Energy.gov, 2010).”

3For example, the 2009 American Recovery and Reinvestment Act allocated $4.5 billion to grid modern-
ization, which provided support for two major initiatives, the Smart Grid Investment Grad program and the
Smart Grid Demonstration Program (SmartGrid.gov, 2023). More recently, the Infrastructure Investment and
Jobs Act of 2022 included $3 billion for Smart Grid Investment Matching Grants (Whitehouse.gov, 2022).
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such as home energy reports (Allcott and Kessler, 2019; Allcott, 2015; Allcott and Rogers,

2014; Ayres et al., 2013; Allcott, 2011). Major third-party “implementors” in the utility sec-

tor, such the Oracle Corporation, are offering HBA programs to their clients, and some of

the nation’s largest utilities have initiated HBA programs, including Pacific Gas & Electric,

Consumers Energy, Xcel Energy, Salt River Project, and Commonwealth Edison.4

Despite ongoing adoptions of HBA programs, we are unaware of peer-reviewed evidence

of their effectiveness. This paper fills that gap by analyzing the impacts of a high bill alert

(HBA) program run by a large Midwestern electric and gas utility in 2015 and 2016 de-

signed to help households avoid bill shocks. The utility sent alerts part way through monthly

billing cycles to dual-fuel households whose electricity or natural gas consumption was on

track to exceed normal levels by 30% or more. For evaluation purposes, the program was

implemented as a natural field experiment (Harrison and List, 2004), with about 50,000

households randomly assigned to a treatment group and 25,000 households to a control

group. The utility delivered electricity alerts to about 31,000 households and gas alerts to

about 6,000 households during the 13-month treatment window. In order to assess the per-

sistence of the effects, we also analyze the effects of the program during the eleven months

immediately after the program was discontinued.5

We report several key findings. First, the HBA program led to mean conservation of

about 0.5% of electricity consumption and 0.5% of natural gas consumption during the treat-

ment period. These effects are measured across all treatment group households regardless

of whether a household received an alert and capture the average effect of the HBA pro-

gram on enrolled households. Second, consistent with avoiding bill shocks, the estimates

were small and insignificant at the bottom of the usage distribution and large and signif-

icant at the top of the usage distribution. This finding holds whether we measure usage

in nominal terms or normalize consumption to measure usage relative to each household’s

4HBA programs can be considered behavioral interventions, which have become common additions to the
suite of demand-side management (DSM) programs offered by many utilities, in part because behavioral pro-
grams have lower costs and scale more easily than traditional programs that involve upgrading equipment
to improve energy efficiency. DSM programs are often motivated or required by regulatory bodies through
integrated resources plans or similar processes that require utilities to make choices that are aligned with
“the public interest” (Lazar, 2016).

5The program was discontinued by the utility to allow for evaluation. It was later deployed universally
among the customer base, although that time frame is outside our sample.
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pre-program usage. Third, HBA conservation of both energy types persisted after the utility

stopped sending HBAs. We find conservation of about 0.5% for electricity and gas in the

eleven months after the utility stopped delivery, indicating that households made lasting

adjustments (e.g., fixing or replacing energy inefficient equipment). Fourth, motivated by

the current focus on distributional effects within the energy sector (e.g., the Biden Admin-

istration’s Justice40 initiative), we examine whether the effect of the program varied by

zip-code income and find little evidence of heterogenous effects by income, indicating the

benefits accrued to households in both low- and high-income communities.

We estimate the consumer welfare benefits of the HBA program for the utility’s residen-

tial customer population in calendar year 2021 were about $200,000 – if the foregone value

from the conserved energy was just marginal to the price of energy – and could have been as

high as $7 million if the foregone value was zero. The two bounds straddle our estimates of

program costs, which illuminates an easily overlooked point: not all behavioral conservation

is the same from a welfare perspective. The welfare impact depends on the foregone value to

consumers of the avoided consumption. For example, if a utility is implementing a program,

and the goal is energy conservation, there is greater value if the behavioral mechanism is

conservation of low-value, wasteful energy – such as energy that is more likely to be elimi-

nated by the HBA program – than if it is achieved through conservation of energy that may

be high-value, such as households setting the thermostat at a less comfortable temperature

in response to a home energy report that displays a household’s energy consumption relative

to their neighbors.

Our findings about the benefits of bill alerts also have relevance for consumers in other

markets. Consumers can experience bill shocks whenever it is difficult to track one’s con-

sumption and consumption precedes payment, including in health care, internet service,

phone service, and credit cards. Recognizing this potential harm, the Federal Communica-

tions Commission estimates one in six wireless consumers has experienced a mobile phone

bill shock and now maintains a bill shock website (Horrigan and Satterwhite, 2020). Our

research suggests that bill alerts may be a useful policy for helping consumers in other

markets avoid such shocks. Our research also highlights the importance of “behavioral

mechanisms.” For example, interventions that aim to help people lose weight may be more
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valuable if they lead participants to shift to a more nutritious diet, and not just a low-

calorie one. Similarly, programs that aim to increase youth sports participation are likely

to be more valuable if the behavioral mechanism is reduced social media usage rather than

reduce time spent studying or practicing musical instruments. In our case, the value of en-

ergy conservation is enhanced if it is achieved through savings that eliminate low-value or

wasteful consumption.

In addition to having policy relevance and connecting to an array of consumer markets,

this paper also adds to a large and growing literature on information feedback to utility

customers about energy consumption and prices.6 Much of this literature has focused on

feedback provided continuously or at regular intervals that encourages customers to con-

serve energy daily or during specific times of day. Some studies find that providing feedback

enhances household responsiveness to pricing or creates incentives for energy conservation

(Allcott, 2011; Jessoe and Rapson, 2014; Martin and Rivers, 2018). However, other studies

(Burkhardt et al., 2019; Fabra et al., 2021) find no statistically significant effects from infor-

mation feedback. Our study contributes to this literature by presenting evidence about the

effectiveness of personalized feedback delivered at irregular intervals, triggered by specific

events (forecasts of high bills), and alerting households to potential economic losses.

Finally, our results contribute to the literature on the persistence of information and be-

havioral treatments effects. Assessing persistence is important because it indicates whether

a behavior or information program is likely to work and be cost-effective in the long run. Cit-

ing a large literature on persistence of behavior changes in retail energy and other consumer

markets, Brandon et al. (2022) observe that it is rare for the treatment effects of behavior

modification and information treatments to persist after treatment ends. Other studies also

show post-treatment decay of treatment effects (Allcott and Rogers, 2014; Gilbert and Graff

Zivin, 2014). Our results stand out because we document persistence: despite irregular and

infrequent delivery of HBAs, electricity and gas conservation fully persisted for at least one

6Other examples of interventions in the utility sector connected to consumer behavior include pairing price
schedule changes with enhanced information, such as in-home displays (Jessoe and Rapson, 2014; Bollinger
and Hartman, 2020; Matisoff et al., 2020; Schneider and Sunstein, 2017); subsidizing smart thermostats
(Blonz et al., 2018); subsidizing high efficiency products (Borenstein and Davis, 2016; Jacobsen, 2019; Jacob-
sen, 2023; Neveu and Sherlock, 2016); and deploying behavioral demand response programs (Brandon et al.,
2018).
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year after treatment ended. The framing of forecasts of consumption increases as potential

losses (Kahneman and Tversky, 1979) may have motivated households receiving HBAs to

take long-lasting actions to reduce their consumption and contributed to the persistence of

energy savings.

At the outset, we want to emphasize that this paper focuses on evaluating the effect of

the HBA program, not an alert itself. There are three reasons for this. First, we view the ag-

gregate effect of the program as the more important question, as that is the dimension that

has most relevance to program managers and policymakers. Second, due to the randomized

nature of enrollment in the program, we can obtain unbiased estimates of the effect of the

HBA program. Third, alerts themselves are endogenous and triggered by usage. In practice,

the association between an alert and usage will be a function of 1) the factors that triggered

elevated usage at the beginning of the billing cycle, such as mechanical failures; and 2) any

behavioral response to receiving a bill. Empirically, estimates that use the release of an

alert as the treatment variable would capture the effect of both margins and it would not be

possible to ascertain the role of each factor.7

Despite these challenges, we do, however, use a scaling procedure based on our estimates

of program effects to bound estimates of local average treatment effects for households who

received alerts. Upper bound estimates are based on the assumption that all alert effects

are concentrated in billing cycles when a household received an alert, whereas lower bound

estimates are based on the assumption that alerts affect consumption during all billing

cycles on or after the household received its first alert. This procedure, which is described

in more detail in Section 5.4, indicates that the effect of an electricity alert on electricity

consumption is between 0.82% and 4.8% and the effect of a gas alert on gas consumption is

between 5.9% and 41.2%.
7We present estimates of the relationship between an alert and energy usage in Table A.1 in the Appendix.

The results indicate than alert is associated with elevated usage amounts, but only by up to 20% (depending
on which fuel is used for the dependent variable and which fuel triggered the alert), which is lower than the
projected 30% increase that triggers an alert.
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2 High Bill Alerts: Background and Conceptual Model

An HBA is a notification from the utility sent mid-billing cycle that the household’s next

electricity or natural gas bill is expected to be higher than normal. In our case, the util-

ity sent an HBA by email when a household’s monthly energy consumption was projected

to exceed its consumption for the same period in the year preceding the start of the HBA

program by 30% or more and the bill was projected to be greater than $30. The HBA pro-

vided the household with a forecast of the monthly billing amount and an estimate of the

difference between the forecasted bill and the bill for the same period in the previous year.

The HBA also embedded a link to an online home energy assessment, where the household

could receive personalized recommendations for conserving energy.

As consumers are often inattentive to their energy consumption and expenditures

(DellaVigna, 2009; Allcott and Greenstone, 2012; Sallee, 2014; Jacobsen, 2015; Gillan, 2018;

Gabaix, 2017; and Allcott and Knittel, 2019), it is natural to ask, why they would pay at-

tention to HBAs, especially if the alerts contain similar information to monthly bills? One

reason is that, unlike monthly bills, which are delivered on a schedule, HBAs are not de-

livered regularly. The asynchronous, event-based nature of HBAs raises their salience. A

second reason is that the information in HBAs is framed in a way to motivate households to

act. The HBA explicitly compares the forecasted consumption to consumption in the same

period a year ago, and the difference is framed as a potential loss (e.g., “you’re on track to

spend $37 more than the same time last year”). Since households tend to be loss-averse

and weigh potential losses of a given amount more than equal-sized gains (Kahneman and

Tversky, 1979), the framing of HBAs in this way may motivate households to conserve. Gen-

erally, HBAs are a tool that enhances the amount of information households receive about

their consumption and the information is presented in a way that is both salient and not

overwhelming or overly complex.8 Below, we present a model of how enhanced information

is likely to affect energy consumption and consumer welfare.

8Jacobsen and Stewart (2022) present evidence that overly complex environments can overwhelm con-
sumers and dampen their behavioral responses.
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2.1 Model Setup

Consider a utility-maximizing household with income, I, that receives utility, U(T, z), from

consumption of energy services, T, produced in the home using utility-supplied energy, e,

with unit price, p, and a composite of all other market-based goods and services, z. The

household produces energy services with home appliances and equipment according to a con-

stant returns to scale production function (Durbin and McFadden, 1984; Davis, 2008). The

price of the market composite good is normalized to one. The household has standard, well-

behaved preferences over consumption of market goods and services and home-produced

energy services.9

At the beginning of each period, the household forms beliefs about the marginal cost of

producing energy services µ̂. The marginal cost of energy services depends on the unit price

of energy, p, and the efficiency of the production function, θ, with which the home converts

energy e into home services such as space heat.10 For energy services connected to weather

(e.g., the cost of cooling the residence to 72 degrees), the marginal cost may also depend

on outside weather. Due to efficiency degradation from wear-and-tear and/or mechanical

failures, weather fluctuations affecting the amount of energy required to cool or heat a res-

idence to a certain temperature, or changes in the price of electricity, the marginal cost of

energy services will vary over time.11 The household can instantaneously and without cost

change its consumption in response to new information about the marginal cost of energy

services. However, due to utility monthly billing, the household only learns its energy con-

sumption and the marginal cost of energy services when it receives a bill at the end of the

period.

Each period (i.e., a utility billing cycle), the household’s constrained utility maximization

9Assume the household has locally nonsatiated and strictly convex preferences over T and z. Also, U is
well-behaved, continuous, and twice differentiable function of T and z, with Uk > 0, Ukk < 0, Uk j ̸=k > 0, for all
T and z in {(T, z) : T ≥ 0, z ≥ 0}.

10Assume the CRS production function is T = f (e;θ), where θ is the efficiency with which the home converts
energy into energy services and T is such that f (0;θ)= 0, ∂ f /∂e > 0, ∂2 f /∂e2 = 0, and ∂ f /∂θ > 0 for all e > 0.

11Examples of efficiency degradation include break down of insulation levels in the home, furnaces develop-
ing cracks in heat exchangers or building up dust, and poor maintenance of HVAC equipment.
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problem can be written as:

max
T,z

U(T, z)

subject to µ̂T + z ≤ I
(1)

where the household budget constraint has been written as a function of the household’s

belief about the marginal cost of home energy services.12 The household chooses consump-

tion of energy services T at the beginning of the period. After learning about their actual

expenditures on energy services at the end of the period, to maintain budget balance, the

household spends its remaining income on the composite of market goods and services.13

The household’s utility for the period is a function of the quantities of energy services and

the composite market good it consumes.14

2.2 Outcomes Absent an HBA Program

Figure 1 illustrates several solutions to the household’s utility maximization problem when

there has been a change in the marginal cost of producing energy services. We begin with

scenario “A,” which depicts the households chosen bundle given the composite market good

price and the household’s belief about the marginal cost of energy services µ0. The house-

hold consumes TA energy services with the expectation of consuming bundle (TA, ZA) and

realizing utility UA. At the end of the period, if the ex post marginal cost, µp, equals µ0,

the household will consume composite market goods and services ZA, where the ex-post

budget constraint is just satisfied and the marginal rate of substitution between home en-

ergy services and market-produced goods is equal to µ0. Specifically, the household chooses

ZA to satisfy the budget constraint, which also satisfies the ex-ante first order necessary

12Pollak and Wachter (1975) show that if the home production technologies are constant returns to scale and
there is no joint home production of goods and services, the solution to the household’s utility maximization
problem can be simplified by rewriting the household budget constraint as a function of consumption of the
household energy services and the marginal cost of producing these services using utility supplied energy.

13Many aspects of household consumption conform to this model of sequential choice of energy services and
market goods and services. For example, households program the home thermostat, select a temperature
on the water heater, set the refrigerator temperature, and configure other appliance settings, which then
determine the household’s future energy consumption and billing charges.

14To simplify the analysis, we do not allow household to save and instead require budget balance in each
period. In a dynamic multi-period model, savings could be used to insure against future bill shocks and
to smooth consumption. Even under such a such a scenario, households would be harmed by informally
insuring against unexpected bill shocks because they would need to forego appealing investment opportunities
to maintain liquidity.
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condition:
∂U /∂T
∂U /∂Z

=µ0 =µp. (2)

When the household’s beliefs about µ are correct (µ0 = µp), the household’s consumption of

home energy services will be optimal from both ex ante and ex post perspectives, that is, the

bundle the household would select after learning µ is the same one the household chooses

before the marginal cost of energy services is revealed.

But what happens if the marginal cost of energy services is different than expected?

Suppose the marginal cost turns out to be µ1, which is greater than µ0. In this case, depicted

in scenario “B” in Figure 1, the ex post budget constraint pivots inward relative to the ex-

ante constraint. Only when the household receives the next energy bill will it learn this, and

therefore it does not have a chance to re-optimize its consumption of energy services, which

remain at TA. At the end of the period, the utility-maximizing household learns the ex post

marginal cost and chooses zB to satisfy the new (ex post) budget constraint and consumes

bundle B, (TB, zB). At consumption bundle B with ex post relative prices µ1, the household

consumes too much T and e and the marginal rate of substitution between home energy

services and market-produced goods is less than the marginal price ratio:

∂U(TA, zB)/∂T
∂U(TA, zB)/∂z

<µ1 (3)

When the marginal cost of energy services is higher than expected, the household is

worse off in two ways. First, the household faces a higher marginal cost of energy services.

This means the household pays more for space cooling, hot water, or lighting and is therefore

poorer in real terms due to the income effect. Second, the household consumes too much en-

ergy services and too little other goods and services from a utility maximization standpoint

at the higher marginal cost. Specifically, if the household had held accurate beliefs at the

beginning of the billing cycle, they would have chosen the bundle represented by scenario

C in Figure 1, which equalizes the ratio of marginal utility to prices across T and z, and

corresponds to a level of utility, UC(TC, ZC), that exceeds UB(TB, ZB).

To evaluate the loss in utility from an unexpected change in µ, let T(µ, I) be the energy

services a household with income I would demand ex post after learning the marginal cost
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µ. Then, by substituting this demand function and the rearranged budget constraint for z

into the utility function, the household’s reduction in utility from being unable to optimize

at the ex post relative price can be written as:

U(TC, zC)−U(TB, zB)=U(T(µ1, I), I −µ1T(µ1, I))−U(T(µ0, I), I −µ1T(µ0, I)). (4)

In the right side of this expression, the second term is less than the first – implying a util-

ity loss – because after marginal cost increases to µ1, the household continues to consume

energy services as if marginal cost is µ0. This expression is the household’s welfare loss

stemming from its inability to track its energy consumption, which prevents adjustments to

its consumption when there is a change in marginal cost of energy services.

2.3 High Bill Alerts as a Partial Solution to Welfare Loss from Incomplete Infor-

mation

How does the household’s consumption and utility change with an HBA program? When

the household receives an HBA, it learns new information about the cost of energy services,

which, for simplicity, we assume it can use to fully (i.e., accurately) update its beliefs.15 To

see this, assume, without loss of generality, each period has length of one, and an HBA is

delivered at time t in (0, 1). At the beginning of the billing cycle, a household believes the

marginal cost of energy services is µ0 and consumes energy services at a rate that would

lead to TA total energy services over the entire billing cycle. In reality, the marginal cost

of energy services is high, µ1, and the household consumes more energy than normal, trig-

gering an HBA. After delivery of the HBA, the household updates its beliefs and reduces its

rate of consumption of energy services to a level that would accumulate to TC over an entire

billing period (because this level equalizes the ratio of marginal utilities to prices across

T and z). In this case, the household’s consumption of energy services is represented by

scenario D in Figure 1, and entails a level of consumption of energy services, TD , equal to

tTA + (1− t)TC, which is less than TA, and therefore energy consumption decreases relative
15We assume the electric utility did not inform the household it was enrolled in an HBA program, consistent

with the HBA program we study. This simplifies the analysis because risk averse households unable to track
their energy use over the billing cycle may adjust their consumption knowing the utility will monitor for and
inform them of large increases.
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to a no-alert counterfactual.16 The household spends its remaining income on market goods

and services zD = I −µ1(tTA + (1− t)TC).

The change in utility because of the HBA can be represented with the following expres-

sion,

U(TD , zD)−U(TB, zB)=
U(tT(µ0, I)+ (1− t)T(µ1, I), I − tµ1T(µ0, I)− (1− t)µ1T(µ1, I))−U(T(µ0, I), I −µ1T(µ0, I)).

(5)

This expression is positive due to the assumed strict convexity of the household’s prefer-

ences and the strict quasi-concavity of its utility function.17 While the household’s utility

in scenario D is less than it would be under scenario C, it is greater than under scenario

B (which is the level that would have accrued absent an HBA) and therefore the HBA re-

duces the utility loss from monthly billing. Since the HBA increases the household’s utility

from UB to UD , the HBA’s impact on consumer welfare can be measured as the dollar ex-

penditures just needed to move the household from UB to UD . In Figure 1, this amount

is shown by the difference between the two dotted budget constraints with slopes equal to

µ1 and tangent to the UB and UD indifference curves. This HBA consumer welfare impact

equals exp(UD)− exp(UB), where exp(U) is the minimum expenditures needed to achieve

utility U at the new, higher energy services marginal cost µ1 and shown by where the bud-

get constraint achieving utility U intersects the z (numeraire good) axis. In Section 6, we

undertake a partial equilibrium analysis to estimate the HBA program consumer welfare

benefit from alerting households to large consumption increases.

This simple model shows households incur welfare losses from monthly utility billing

when they experience undetected changes in the marginal cost of energy services; and HBAs

can improve consumer welfare by alerting households mid-billing cycle to these changes.

16Let eB and eC be energy consumption when the household consumes, respectively, TB and TC energy
services. By the properties of the energy services production function, eB > eC . At bundle D, the household’s
consumption of energy is eD = teB + (1− t)∗ eC < eB, which means energy consumption falls after the HBA is
delivered.

17Because the household’s preferences are strictly convex, U(T, z) is strictly quasi-concave. Strict
concavity of the utility function implies U(tT(µ0, I) + (1 − t)T(µ1, I), I − tµ1T(µ0, I) − (1 − t)µ1T(µ1, I)) >
minU(T(µ0, I), I −µ1T(µ0, I)),U(T(µ1, I), I −µ1T(µ1, I)). Since U(T(µ0, I), I − µ1T(µ0, I)) < U(T(µ1, I), I −
µ1T(µ1, I)), it must be that U(t∗T(µ0, I)+ (1− t)∗T(µ1, I), I− t∗µ1T(µ0, I)− (1− t)∗µ1T(µ1, I))>U(T(µ0, I), I−
µ1T(µ0, I)), that is, that the HBA lifts the household’s welfare.
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The theoretical predictions from the model are that the HBA program should lead to reduc-

tions in household demand for energy services and therefore decreased energy consumption

and increased consumer utility. We now move on to discuss the HBA experimental design

and the empirical analysis, in which we will examine the effect of the program on energy

consumption.

3 Experimental Design and Data

In 2015 and 2016, the HBA program under study was deployed by a large vertically inte-

grated, investor-owned electric and gas utility in the Midwest. The utility’s motivation for

running the program was to benefit households by enabling them to take pre-emptive steps

toward lowering their bills and avoiding bill shocks and to reduce the volume of inquiries

to its customer service center from households surprised by large bills. To cleanly identify

the effects of the HBA program, it was implemented as a large, randomized natural field

experiment. In coordination with a third-party program implementer, Opower, the utility

randomly assigned about 50,000 households receiving gas and electric service to a treatment

group and about 25,000 dual-fuel households to a control group in 2015.

Treatment group households were automatically enrolled in the program, making them

eligible to receive the alerts based on their usage levels once the program was initiated.

Treatment group households were not informed the utility had enrolled them in an HBA

program and only became aware of the alerts when they received the first one. Households

who received an alert could opt out of receiving future ones at any time by clicking on a link

embedded in the alert email, though in practice very few households (about 1%) opted out.

Households in the control group were not eligible to receive HBAs, were not informed of the

experiment, and provided the baseline for measuring the energy impacts of the HBA. All

treatment group and control group households received gas and electricity service from the

utility, had a single meter per fuel type, were on standard (non-time-of-use) rates for gas

and electricity, and were not enrolled in the utility’s home energy reports program.

HBAs were first issued in June 2015. As noted above, an alert was sent mid-billing

cycle via email to a customer when the customer’s monthly electricity or gas consumption

was on track to be 30% higher than the bill for the same period in the previous year and
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the bill was forecasted to exceed $30, with both estimates being derived using a propri-

etary algorithm from the third-party implementer. The alerts were based on gas-specific

or electric-specific consumption patterns (e.g., a household’s typical electricity usage) and

contained gas-specific or electric-specific information (e.g., households were informed that

their electricity bill was expected to be unusually large).

Figure 2 shows the numbers of electric and gas bill alerts sent in each month between

June 2015 and June 2016 and the cumulative numbers of electric and gas alerts sent since

the beginning of the experiment. Over the experiment’s 13 months, the utility sent about

100,000 electric or gas alerts or an average of about two per treatment group household.

The utility sent more electric than gas alerts, and accordingly, about 31,000 treatment group

households received an electric alert, but only 6,000 received a gas alert. According to the

program implementer, approximately 59% of the HBA emails sent between June 10, 2015

and October 31, 2015 were opened by the recipient, and 6.4% of HBA emails resulted in the

recipient clicking the Home Energy Assessment link.

We collected monthly billing consumption data from June 2014 to May 2017 for all HBA

program treatment group and control group customers. This period includes twelve months

before treatment, thirteen months when the utility sent alerts, and eleven months after the

utility stopped sending alerts. After this window, the utility shifted to universal deployment

of the HBA program, which ended our window for evaluation. The availability of billing

data for the year before treatment started provides information about the pre-treatment

consumption of all households and allows us to estimate the HBA program treatment effects

using difference-in-differences panel regression methods. Before analyzing the data, we

dropped a small number of monthly observations that have zero electricity consumption or

a bill length of forty days or longer (both of which comprise less than 0.1% of the data).

We approached outliers in the consumption data with circumspection. Outliers in the

right tail of the distribution have the potential to bias estimates of the HBA program treat-

ment effects, or limit the precision of the estimates, which might warrant dropping them

from the analysis. However, to an extent, the HBA program is designed to target outlying

large consumption levels, which argues for their inclusion. To be conservative, in our main

analysis, we drop the bottom and top 1% of observations based on ADC of electricity and the
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top 1% of observations for ADC of natural gas (because 0 is a credible value for natural gas),

and, as a robustness check, we re-run the analysis with the outliers.18 As shown in the Ap-

pendix, the main results hold when the outliers are included and in some cases get notably

stronger (see Tables A.2, A.3, and A.4 and Figure A.1). In total, in the primary data that

exclude outliers, there are 4.3 million observations spanning 74,475 households, two-thirds

of which are treatment households.

To check the appropriate randomization of the treatment, we compared the consumption

of the treatment group and the control group in each pre-treatment billing month. Panel A

and Panel B of Figure 3 show monthly means of daily electricity and daily gas consumption

and estimates of the differences with 95% confidence intervals.19 For both energy types,

the means are closely aligned, and all differences are close to zero and statistically insignifi-

cant. We also performed a chi-square test of the difference between the treatment group and

the control group in the distribution of households across zip codes and failed to reject the

hypothesis that the distributions were different (p=0.46). Zip code locations are strongly cor-

related with household housing, demographic, and economic characteristics, so this result

provides additional confidence about the validity of the randomization. Overall, we con-

cluded the randomized treatment and control groups were well-balanced on consumption

and location characteristics.

4 Econometric Overview

In this section, we present our empirical approach for estimating the impacts of the HBA

program on electricity and gas consumption. For all parts of the analysis, we estimate

panel regression models of household average daily consumption (ADC) of electricity and

natural gas, and the models are estimated with monthly billing data. For some models, we

divide the household’s ADC by the ADC for the corresponding month in the pre-treatment

18In models that examine relative ADC variable, we go through a second stage of drops (i.e. drop the top and
bottom 1% again after constructing the relative ADC variables) because the scaling process itself can create
outlying values (for example, if the usage during the pre-period happened to be unusually small).

19Across the sample, mean ADC for electricity is 21.1 kWh/day (standard deviation = 12.97) and mean ADC
for natural gas is 1.94 therms/day (standard deviation = 1.99).
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period to create a new variable called “relative ADC.”20 These relative ADC models are

estimated with only treatment period and post-treatment period data and provide a way to

measure more directly the effect of the HBA program on avoiding “shocks”—i.e., changes

in consumption that are different from each household’s normal consumption patterns. All

models weight observations by the number of days in the billing cycle and cluster standard

errors by household.

Our baseline fixed-effects panel regression model, which captures the conditional mean

effect of the program on usage, is specified as follows:

ADCit =β1Treatmenti ×Postt +αi +γt +ϵit (6)

where ADCit is average daily consumption for household i in period t, Treatmenti is an in-

dicator variable for assignment to the treatment group, Postt is an indicator for the period

after the HBA program was initiated, αi represents a vector of household fixed effects, and

γt represents a vector of month-of-sample fixed effects coded by the end of the household’s

billing cycle. The household fixed effects control for time-invariant differences in consump-

tion between households, while the time-period fixed effects control for effects specific to

each month and year. The coefficient β1 indicates the HBA program average treatment ef-

fects during the period after the program was initiated. In addition to this model, we also

estimate a specification that includes calendar-month-by-household fixed effects (i.e., twelve

fixed effects for each household – one for each calendar month) to account for the season-

ality in each household’s energy consumption. We further estimate a model that buckets

the post-treatment windows into two periods: one when the HBA program was active (June

2016-June 2016) and one for after it was discontinued (July 2016-May 2017).

To evaluate the dynamics of the treatment effects in more detail, we estimate an “event

study” version of the fixed effects model that interacts the treatment group indicator vari-

able with month-by-year indicator variables.21 This specification yields an estimate of the

20Observations during the period after treatment was initiated are matched to pre-program observations
that ended in the same calendar month. Relative ADC is computed by dividing nominal ADC by pre-program
ADC.

21In these estimates, we only include one fixed effect per household so that we can non-parametrically
examine trends leading into treatment. We could not do this with household-by-calendar-month fixed effects
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HBA program treatment effect for each month-year of the sample except for the last month

of the pre-treatment period, which is omitted, and shows how the program energy impacts

evolve for the thirteen months during treatment and eleven months after treatment.

We also deploy quantile regression models that examine the effect of the HBA program at

different segments of the usage distribution to estimate whether the program helped house-

holds avoid unusually large bill shocks. Specifically, we estimate unconditional quantile

regressions (Firpo et al, 2009),22 which provides estimates of treatment effects at different

segments of the consumption distribution.23 While we estimate quantile models with ADC

as the dependent variable, our primary focus is on models that use relative ADC. The rea-

son for this is that, if the effects are large at the top of the distribution in the nominal ADC

model, the mechanism could be either a) large users being the most likely to respond to

the HBA program or b) representative users avoiding unusually large bills relative to their

typical usage levels. In contrast, in the relative ADC models, if larger effects are evident

at the top of the distribution, the mechanism must be that households avoided unusually

large bills relative to their historical consumption levels. In other words, the relative ADC

models are best-suited for testing whether the HBA program allowed households to avoid

bill shocks.

Lastly, we estimate models that allow for heterogenous program effects based on the

median income in the household’s zip code to see if the effect was stronger in communities

with high or low incomes. Bill shocks can have the most serious effects on poor house-

holds, which may be forced to cut back on expenditures for energy and other essential goods

and services to pay utility bills. We estimate heterogeneous income effects by linking each

household to its community’s median income household based on the household’s zip code

because we only have one year of pre-treatment data.
22The unconditional quantile regressions were estimated by first transforming the dependent variable using

a recentered influence function (RIF) and then running an OLS regression of the transformed data on a treat-
ment indicator, household-by-calendar month fixed effects, and month-by-year fixed effects. See Rios-Avila
(2020) for additional details.

23An alternative to the unconditional quantile model is the conditional quantile model (Koenker and Bassett,
1978). Both conditional and unconditional quantile regressions control for covariates. The unconditional
versus conditional distinction refers to whether the relevant margin in the distribution is determined by the
distribution of the dependent variable or the distribution of the dependent variable after netting out the role of
covariates. Unconditional quantile models have simpler, and generally more meaningful interpretations than
conditional quantile regression models. For brevity, for the remainder of the manuscript, we will just write
“quantile” models/estimates – all of which are unconditional.
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and five-year median income estimates for zip code tabulation areas (ZCTA) from the 2016

U.S. Census’ American Community Survey. There are 100 zip codes represented in our sam-

ple with median incomes ranging from about $30,000 to over $100,000, with a mean across

these medians of about $67,000. To estimate heterogenous effects, we include an interaction

of Treatmenti ×Postt and income in the regression models, and to ease interpretation, we

de-mean the income variable using the overall sample mean and scale it by $10,000s.

5 Results

5.1 Estimating HBA Program Effects on Mean Usage: Overall, by Program Stage,

and in an Event Study

We begin by estimating the conditional mean effect of the HBA program on consumption.

For each energy type, we deploy three specifications, starting with a basic D-in-D model.

The second model incorporates month-by-year and household fixed effects, and the third

model, our preferred specification, includes both month-by-year fixed effects and household-

by-calendar month fixed effects. The models capture the mean effect of the HBA program

across all twenty-four months after the program was initiated, including thirteen months

when alerts were actively being released and eleven months after alerts were discontinued.

We report the results in Table 1. For electricity, the main treatments effects are stable across

specifications and our preferred estimates indicate that the program decreased electricity

consumption by .10 kWh or 0.5% of consumption. For gas, treatment effects are also gener-

ally stable across specifications, although the inclusion of household fixed effect(s) matters

more than in the electricity models, and our preferred estimates indicate a saving of .009

therms, or 0.5% of consumption.

It is notable that, although the utility sent many fewer gas than electric alerts, the HBA

program caused similar percentage reductions in gas consumption as electricity. The ap-

proximate equality of the percentage treatment effects for electricity and gas despite many

fewer households having received gas alerts could be explained by it being comparatively

easier or less costly for households to adjust gas than electricity consumption because nat-

ural gas is used for a relatively small number of home end uses (space heating, water heat-
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ing, and cooking) or by households not differentiating between electric and gas alerts and

responded to either by reducing consumption of both fuels.

The mean HBA program HBA program’s effects in Table 1 are estimated across the

treatment and post-treatment periods, but the treatment effects may have changed after

the utility stopped sending HBAs. For example, if treated households increased energy

conservation behaviors in response to the alerts, they may have experienced backsliding

and the treatment effects might have diminished during the post-treatment period (Allcott

and Rogers, 2014; Brandon et al., 2022). Table 2 presents models that estimate the effect

of the HBA program separately for the period when it was active versus after it had been

discontinued. Across both fuel types, the estimated effects are statistically indistinguishable

during the period when alerts were active versus after they had been discontinued. These

results indicate that the effects of the program persisted in the eleven months after the

alerts had been discontinued, potentially due to either persistent behavioral changes or

durable investments in energy efficiency.

To examine program dynamics in more detail, we turn to our event study model, which

estimates HBA treatment effects for each pre-treatment month (except May 2015, the

excluded month), each treatment month from June 2015 to June 2016, and each post-

treatment month from July 2016 to May 2017. Since we estimate treatment effects for

each month, the confidence intervals are relatively wide, and many intervals include zero.

Nonetheless, the patterns in the point estimates are still useful for understanding the pro-

gram dynamics.

We begin with electricity, which is presented in Figure 4.1. During the pre-treatment

period, the estimates were close to zero and statistically insignificant. Once the program

began, the effects steadily increased, which is consistent with more households having re-

ceived at least one alert as the program matured, thereby triggering conservation. After the

alerts were terminated, the effects persisted, which aligns with the estimates provided in

Table 2, although there is some minor visual evidence that they were tapering off toward

the end of the sample.

Turning to gas, which is presented in Figure 4.2, seasonality is evident, as the coeffi-

cients display relative increases during winter months. These increases likely stem from
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sampling noise in the randomization process that becomes most evident during periods of

elevated usage due to winter-time space heating. Focusing on the winter months, there is

evidence that usage was higher in treatment group households before the program began,

but then decreased in subsequent winters both when the HBA program was active (2015)

and after it had been discontinued (winter 2016). There is less evidence of an effect during

the non-winter months. Collectively, the evidence here is less conclusive, but the pattern

in the point estimates is consistent with previous estimates and the electricity event study:

the HBA program decreased gas consumption, especially during winter months when us-

age is greatest, and this decrease persisted after the HBA program was discontinued. The

persistence of HBA program energy impacts during the post-treatment period is a notable

finding because the effects of behavioral programs in the energy and environmental sectors

are often fleeting (Brandon et al., 2022; Allcott and Rogers, 2014; Gilbert and Graff Zivin,

2014; Ferraro and Price, 2013; Jacobsen, 2011).

5.2 Quantile Estimates: Did the HBA Program Help Households Avoid Bill

Shocks?

Panel A and Panel B of Table 3 show estimates of the HBA program impacts for different

percentiles of the electricity and gas consumption distributions based on quantile regression

models. For electricity, the HBA program did not have statistically significant impacts below

the 50th percentile of the consumption distribution. However, between the 50th and 90th

percentiles, statistically significant effects emerge, and the effects increase toward the tail

of the distribution. For example, at the 90th percentile, the HBA program treatment effect

is -0.293 kWh per treatment group household per day, which is three times larger than the

effect on mean consumption levels. Above the 90th percentile, the estimates are noisy and

insignificant. Similarly, for natural gas, the program has statistically significant, negative,

and, in general, progressively greater impacts for households above the 25th percentile.24

Thus, for both fuels, HBAs primarily affect bills involving larger amounts of consumption.

As mentioned earlier, these effects could be driven either by large-use households respond-

ing most to the HBA program or households across the distribution taking actions to avoid

24We are not able estimate effects at the bottom of the natural gas distribution because all values are zeroes.
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unusually large bills relative to their typical usage patterns – i.e., “bill shocks.” To focus on

the avoidance of bill shocks, we turn to quantile estimates that use relative ADC as the

dependent variable.

Table 4 presents estimates from unconditional quantile regression models that use a

household’s relative energy consumption as the dependent variable. In these models, large

effects are especially evident at the tail of the distribution. For electricity, significant ef-

fects begin to emerge around the 25th percentile and trend upward all the way to the 99th

percentile. The estimate from the 99th percentile model, which is eight times larger than

the estimate at the median, indicates that relative ADC is 2.3 percentage points lower at

the 99th percentile of the relative ADC distribution for households enrolled in the HBA

program. The natural gas patterns exhibit a similar trend. While the coefficients become

insignificant at the tail of the distribution, the point estimates show a steadily increasing

trend as the percentile of the distribution increases, capping at the 99th percentile at 1.3

percentage points. These results indicate that the HBA program was effective at reducing

the extent to which households experienced bill shocks from elevated usage levels.

It should be noted that the estimates of the stronger effects at the tail of the distribu-

tion are conservative because, as discussed earlier, we drop outliers from the main analysis.

When we include outliers, the stronger relative effect at the tail of the distribution is espe-

cially prominent. As we show in Table A.4, the point estimates for the relative ADC models

at the 99th percentile are -11.860 for electricity and -15.33 for natural gas. These are 36

and 44 times stronger than the effects at the median in the same models.

5.3 HBA Program Treatment Effects by Household Income

As described above, the value of the HBA program from a public policy perspective may be

enhanced if it were particularly effective in low-income communities. To examine that pos-

sibility, we estimate models analogous to those in Table 1, except we include an interaction

of the Treatmenti ×Postt with median zip-code level income. We report the results in Table

5. Across specifications, the interaction term is insignificant, which suggests that the effec-

tiveness of the program did not vary by income. We also estimate analogous relative ADC

quantile regression models that include a treatment by income interaction term as well. The
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estimates are reported in the Appendix (Table A.5) and are also insignificant. We conclude

that there is little evidence that the HBA program had weaker or stronger effects in lower

income areas, suggesting low-income households shared in the benefits of the program. A

potential explanation for this null result is that while low-income households may have the

most to gain from avoiding expenditure shocks, they may also find it more difficult to under-

take conservation, as reflected in the lower rates of efficiency in lower-income households

(Drehobl et al., 2020).

5.4 The Effect of an Alert

Before proceeding to estimating welfare benefits, it is worth reiterating, that we are esti-

mating the effect of the HBA program as opposed to the effect of an alert itself. This is

partly because the effect of the program may be of primary interest due to program offering

being the margin that policymakers and utility managers can influence or control. How-

ever, the effect of an alert itself may still be of interest because it enhances understanding

of behavioral responses from households in the energy sector.

We cannot directly estimate the effects of alerts by using an alert indicator as the treat-

ment variable because alerts are endogenously triggered, but we can bound the effects

through a scaling procedure.25 In particular, if we assume all alert effects are concentrated

in the month in which the alert was issued, we can back out the mean effect of an alert by

dividing our preferred estimates of program effects – reported in columns 3 and 6 of Table

1 for gas and electricity, respectively – by the proportion of observations for treated house-

holds after the HBA program was initiated that correspond to a billing cycle when an alert

was issued. We scale separately for each fuel, reflecting that 9.9% of post-period treatment

household billing cycles had an electricity consumption alert and 1.2% of post-period treat-

ment household billing cycles had a gas consumption alert. This scaling procedure produces

an upper-bound estimate of the effect of an electricity alert of 1.03 kWh (4.8%) and an upper

bound estimate of the effect of a gas alert of .75 therms (41.2%). In contrast, if we assume

the effect of an alert occurred during all billing cycles during or after the first alert for each

25The assumption in our scaling procedure is that all HBA program effects occur through the issuance of
alerts. We believe this is a reasonable assumption in part because the utility did not inform households that
they were enrolled in the HBA program, so we can rule out a Hawthorne effect.
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energy type was issued to each household, we can back out program effects by scaling by

the proportion of post-period treatment household billing cycles occurring on or after each

household’s first alert (58% of observations for electricity and 8.3% of observations for natu-

ral gas). In this case, the scaling procedure produces a lower-bound estimate of the effect of

an electricity alert of .17 kWh (0.82%) and a lower bound estimate of the effect of a gas alert

of .75 therms (5.9%). The range of these estimates, especially for electricity (0.82%-4.8%),

is in alignment with other behavioral responses in the energy sector, such as consumption

responses to home energy reports (Allcott and Rogers, 2014) or consumption responses to en-

rolling in a green electricity program (Jacobsen et al., 2012). The relatively large response

for gas (5.9%-41.2%) may be explained by fewer gas alerts being issued in combination with

the potential for the effect of electricity alerts to spillover onto gas consumption, or by house-

holds being more responsive to gas alerts because they can more easily identify the source

of the increase in consumption because gas is used for fewer end-uses.

6 Consumer Welfare Benefits

In the conceptual model of Section 2, we showed an HBA can lift consumer welfare by pro-

viding information mid-billing cycle to a household about an increase in its energy consump-

tion. In this section, we use partial equilibrium analysis to estimate the consumer welfare

benefit of the HBA program from the delivery of billing alerts. We measure the benefits of

the HBA program for consumers as the difference between their avoided expenditures and

the foregone value of the conserved energy. Calculating the foregone value is complicated

by the likelihood that HBA recipients were initially consuming more energy than would be

optimal, at least under full information (Chetty, 2009). In a simplified economic model with

complete knowledge of the costs and benefits of energy consumption, the value of the last

unit consumed by a household would be equal to the price of the good. If the household con-

served energy from this starting point, the foregone value of the first unit of conservation

would be equal to the price of energy and each conserved unit thereafter would be slightly

decreasing in foregone value. However, if HBA recipients were consuming more energy than

would be optimal under full information – potentially because the cost of acquiring informa-

tion was too high absent the HBA program – then the value of conserved energy could be
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lower than the price and the net benefit of conservation induced by the HBA program would

be greater.

Uncertainty about the foregone value of the conserved energy induced by the HBA pro-

gram makes it difficult to obtain a point estimate of the benefit of the HBA program to

consumers; however, we can bound the impact, which we do by calculating estimates for two

scenarios. We estimate a lower bound by assuming the value of the last unit of consump-

tion was exactly equal to the price and then use that, combined with an estimate of market

demand elasticities, to calculate the welfare effect. We estimate an upper bound by making

the other extreme assumption: the foregone consumption was wasteful and had no value to

consumers.

Figure 5 illustrates the intuition behind our approach and displays the inverse market

demand curve, p(e), for utility-supplied energy for households and the unit market price

for energy, p. We begin with the assumption that the marginal value of the first unit of

conserved energy is exactly equal to the price of energy, p0, which corresponds to a level of

consumption equal to e1. As we know from our empirical estimates, after receiving an HBA,

households reduce their energy consumption and we represent that level of consumption

with e0. Graphically, the avoided expenditures are represented by the area abed and the

foregone value from reduced energy consumption is the area aced. The difference is the

welfare gain equal to abc.26

In practice, because the HBA program was designed to detect unusual usage patterns,

the alerts may have triggered conservation of wasteful, low-value energy, thereby lifting the

gains from conservation. Returning to Figure 5, we depict this conservation as the difference

between e3 and e2. In this scenario, the welfare gain from reducing consumption by ∆e is

equal to fghi, which is a much larger gain than under the previous scenario due to the lower

value of the foregone energy consumption. In an extreme scenario, where the conserved

energy had no value to the household (because it was all being used wastefully), the value

of the foregone consumption would be the entire expenditure savings, which is graphically

equivalent to a rectangle with a high of p0 and a width equal to the amount of conservation.

This area is represented by either abed or the equivalently size rectangle that begins with

26We assume consumers have quasi-linear utility over energy and other market goods.
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the line between f and g and extends down to the x-axis.

We now proceed to calculate bounds for the private consumer welfare benefits. We obtain

our lower bound estimate by assuming all HBA program conservation was marginal to the

price of energy. In this case, households that conserve in response to HBAs have a foregone

value of energy consumption that begins at a level equal to the price of energy and decreases

slightly with each unit of conservation. The lower bound can be approximated as:

∆W ≈ p0(e1 − e0)− p0(e1 − e0)[1+ (e1 − e0)/2εe0] (7)

We derive this expression by first approximating the inverse market demand curve p(e) at e0

using a Taylor’s series expansion and then rewriting the approximation as a function of the

short-run price elasticity of electricity demand ε and the HBA program energy conservation,

e1− e0. Second, we obtain an upper bound estimate of the HBA welfare impact by assuming

all HBA-induced energy conservation had no foregone value to households. In this case, the

gain per unit of conserved energy would equal the price, p0, and the welfare gain in total

would equal ∆W ≈ p0(e1 − e0).27

To capture the effect of the program at scale, welfare impacts of the HBA program are

calculated for 2021 when the utility had made all residential customers eligible to receive

HBAs. We assume a short-run price elasticity of demand for electricity and gas equal to

-0.1 based on estimates from the literature (Labandeira, Labeaga, and Lopez-Otero, 2017;

Burke and Abayasekara, 2018) and an HBA treatment effect equaling 0.5% of consumption

per the electricity and gas impact estimates in Table 1. We obtain electricity and gas retail

prices, counts of the residential customer populations, and annual energy consumption per

customer for 2021 from EIA Form 861 (electricity) and EIA Form 176 (natural gas).

Table 6 reports welfare estimates. Aggregate upper bound estimates – which again are

average price times average energy conservation times the number of customers – are about

$6.5 million for electricity, $2.5 million for natural gas, and $9 million annually overall. The

27The welfare calculations are based on the average energy price, as opposed to the marginal energy price.
There are three reasons for this. First, there is evidence that consumers mostly respond to average prices,
as opposed to marginal prices (Ito, 2014). Second, over time, reduced expenditures from energy conservation
will be translated to reduced bills from consumers based on average prices because the rate-making process
requires that regulated utilities recover their costs. Third, we can observe average prices in the available data.
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lower bound estimates are much smaller. For electricity, the lower bound estimate at our

preferred elasticities equals about $161,000, and for natural gas, it is about $62,000. The

combined total is about $223,000, although it falls considerably with small increases in the

chosen elasticities.

The utility provided us with its cost of administering the HBA program, which includes

fees paid to a third-party program implementer. Based on this information, we estimate

the utility’s cost of administering the program for one year to be about $200,000, which,

due to regulation, can be expected to be passed down to ratepayers in the form of elevated

energy charges.28 The cost estimate falls about equal to our lower bound estimates of the

consumer benefits, and potentially exceeds the benefits if we choose elasticities that exceed

.10 in absolute value.29 However, due to the design of the HBA program, we think it likely

induces conservation of low-value energy, and therefore the program’s benefits are probably

larger than its costs given how close our lower bound estimate falls to our estimated program

costs.30 The range in the estimates underscores the point that the performance of behavioral

programs in the utility sector depends critically on the consumer’s valuation of the avoided

energy consumption.

7 Conclusion

Providing feedback to households on their energy usage holds the promise of creating better

outcomes in the energy sector. This paper provides the first empirical evidence that we are

aware of regarding high bill alert programs targeted at energy consumers, which are a new

tool that utilities can deploy to help households avoid unexpected bill shocks. We find that

28This is our best estimate, but there is some ambiguity in how this number should be calculated depending
on assumptions about start-up program costs, discounted pricing if the program is packaged as part of a suite
of DSM program, and the salary of workers dedicated to operate the HBA program.

29Our analysis focuses on consumer welfare. We do not account for any impacts of HBAs on other mar-
gins, such as externalities in the form of reduced air pollution emissions from electric power plants or home
combustion of natural gas.

30A potential omission from our analysis is that we do not consider the possibility that HBAs can cause
disutility for certain consumers. For example, Allcott and Kessler (2019) find significant heterogeneity in
welfare gains between recipients of home energy reports, as some recipients would have preferred not to
receive them. Disutility from receiving HBAs may be less of a concern, however, because, unlike home energy
reports, HBAs were targeted at utility customers who experienced large consumption increases and were likely
beneficiaries from the alerts.
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the HBA program led to mean conservation of about one-half of a percentage point for pro-

gram participants for both electricity and natural gas consumption, and the conservation

persisted for at least one year after the utility ceased sending alerts. Effects were concen-

trated at the top of the usage distribution – especially when measuring usage relative to

each household’s pre-program level – indicating that the program was helpful at allowing

consumers to avoid unusually large bills.

We evaluate the benefits of the HBA program to consumers and compare them to the

costs of administering the program and show that whether the benefits exceed the costs is

sensitive to assumptions regarding the foregone value of the conserved energy. This result

highlights an important consideration in consumer welfare analysis: the benefits of behav-

ioral programs are a function of the behavioral mechanism by which the primary objective is

achieved. If a behavioral program is aimed at encouraging socially-beneficial behavior, there

can be added value if the program simultaneously corrects individual-level inefficiencies,

such as those caused by incomplete information, rational inattention, or cognitive biases.

With respect to energy conservation, which is a goal of many programs in the energy sector,

if conservation from a program is achieved by a reduction in consumption of valuable energy

services, such as conservation from setting the thermostat at a less comfortable tempera-

ture, then the net effects of the program are likely to be of less value than an alternative

program – such as the one under study – that yields the same amount of energy conserva-

tion but does so by targeting wasted energy due to mechanical breakdowns or inefficiencies

in home heating and cooling equipment.

Several questions are prompted by the results in this paper. One is: how will the ef-

fect of HBA programs on energy consumption and consumer benefits change as the energy

system evolves? While speculative, it may be reasonable to project that the effects of HBA

programs will get stronger in the coming years. Changes in the electricity system like time-

varying prices, increased at-home charging of electric vehicles, and increasing electrification

of energy-using durable goods are likely to add volatility to household bills, thereby creating

more opportunities for HBA program alerts to trigger conservation.

More generally, our research raises questions about the ways in which the massive

amounts of data being generated and collected on consumer behavior can be used to improve
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outcomes for these consumers. For example, in the electricity sector, customers historically

have received information on their consumption through a monthly bill. With smart meters,

there is now the potential to provide customers with nearly continuous information on their

usage. On the one hand, providing customers with frequent data on their usage can enhance

the amount of information that they have access to when making consumer decisions. On

the other hand, overly frequent information provision can overwhelm consumers and reduce

the salience of the information households receive. As the amount of data collected by or-

ganizations expands, the frequency versus salience tension is likely to be relevant to other

areas of the economy as well, such as with data usage alerts for phones, financial alerts

for possible fraud based on credit card expenditures, car system warnings to drivers about

inattentiveness, or medical alerts about changes in health markers. Each area is likely

to have its own unique features that influence how consumers respond to information and

how alert-based programs affect their welfare, and we look forward to further research that

informs how to optimize the delivery of information in the energy sector and beyond.

8 Appendix

1. Estimates of the Association between Receiving an Alert and Mean ADC (Table A.1)

2. Reproducing Results from Main Analysis with Sample that Includes Outliers (Tables

A.2, A.3 and A.4)

3. Quantile Regression Estimates for Relative ADC with Income Interaction (Table A.5)
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10 Tables and Figures

10.1 Main Text Tables and Figures

Figure 1: Household Consumption Bundles and Utility Under Different Scenar-
ios. T represents consumption of energy services and z represents a composite market good
(with price normalized to one). µ0 represents the ex ante expected costs of energy services.
Consumption bundle A represents consumption when the ex ante expected costs of energy
services are realized. Consumption bundle B represents consumption when the ex post
expected costs of energy services are elevated to µ1 and an HBA program is not active. Con-
sumption bundle C represents the optimal consumption bundle when the ex post expected
costs of energy services are elevated to µ1. Consumption bundle D represents consumption
when the ex post expected costs of energy services are elevated to µ1 and an HBA program is
active. The UD indifference curve exceeds the UB indifference curve, reflecting the benefits
to consumers from the HBA program.
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Figure 2: HBA Alerts Trends.
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Figure 3: Mean ADC Prior to the Start of the HBA Program by Experimental Group.
The triangles and circles plot mean daily usage levels for the treatment and control groups,
respectively, based on billing cycles that ended during the corresponding month as indicated
by the horizontal axis. The brackets indicate the 95% confidence interval for the difference
in means usage levels between treatment and control households.



Table 1: Estimates of the Effect of the HBA Program on Mean ADC

Electricity Natural Gas
(1) (2) (3) (4) (5) (6)

Treatment × Post-Pd. -0.105* -0.110*** -0.103*** -0.014** -0.009*** -0.009***
(0.056) (0.038) (0.038) (0.006) (0.003) (0.003)

Treatment Indicator 0.079 0.015*
(0.091) (0.009)

Post-Pd. Indicator 1.218*** -0.325***
(0.046) (0.005)

Constant 20.334*** 21.184*** 21.181*** 2.180*** 1.976*** 1.976***
(0.075) (0.016) (0.017) (0.008) (0.001) (0.001)

HH FEs No Yes No No Yes No
HH-by-Cal.-Month FEs No No Yes No No Yes
Month-of-Sample FEs No Yes Yes No Yes Yes
Treat. Eff. as % -0.49 -0.51 -0.48 -0.79 -0.52 -0.50

R-squared 0.00 0.77 0.91 0.01 0.79 0.96
Observations 2,144,460 2,144,460 2,144,460 2,167,807 2,167,807 2,167,807
Notes: The unit of analysis is a household and an electricity or natural gas bill. The dependent variable is ADC for
either electricity (kWh) or natural gas (therms) as indicated in the heading. All models are linear regression mod-
els. Temporal fixed effects are coded based on the month at the end of the billing cycle. Standard errors clustered by
household. Observations are weighted by the number of days in the billing cycle. One, two, and three stars indicate
10 percent, 5 percent, and 1 percent significance, respectively.



Table 2: Estimates of the Effect of the HBA Program on Mean ADC by Program Stage

Electricity Gas
(1) (2) (3) (4) (5) (6)

Treatment × (Jun 2015-June 2016) -0.093* -0.095*** -0.090** -0.016*** -0.009*** -0.010***
(0.052) (0.036) (0.036) (0.005) (0.003) (0.003)

Treatment × (July 2016-May 2017) -0.118* -0.130*** -0.121** -0.012* -0.009** -0.008***
(0.070) (0.048) (0.049) (0.007) (0.004) (0.003)

Treatment Indicator 0.079 0.015*
(0.091) (0.009)

Jun 2015-June 2016 Indicator 0.706*** -0.371***
(0.042) (0.004)

July 2016-May 2017 Indicator 1.841*** -0.267***
(0.058) (0.006)

Constant 20.334*** 21.184*** 21.181*** 2.180*** 1.976*** 1.976***
(0.075) (0.017) (0.017) (0.008) (0.001) (0.001)

HH FEs No Yes No No Yes No
HH-by-cal.-month FEs No No Yes No No Yes
Month-of-Sample FEs No Yes Yes No Yes Yes
1st Year Treat. Eff. as % -0.44 -0.45 -0.43 -0.90 -0.53 -0.54
2nd Year Treat. Eff. as % -0.56 -0.62 -0.58 -0.69 -0.53 -0.48

R-squared 0.00 0.77 0.91 0.01 0.79 0.96
Observations 2,144,460 2,144,460 2,144,460 2,167,807 2,167,807 2,167,807
Notes: The unit of analysis is a household and an electricity or natural gas bill. The dependent variable is ADC for either elec-
tricity (kWh) or natural gas (therms) as indicated in the heading. All models are linear regression models. Temporal fixed effects
are coded based on the month at the end of the billing cycle. Standard errors clustered by household. Observations are weighted
by the number of days in the billing cycle. One, two, and three stars indicate 10 percent, 5 percent, and 1 percent significance,
respectively.
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Figure 4: Estimates of the Effect of the HBA Program on Mean ADC by Month.
Estimates are based on a linear regression of ADC on household fixed effects, month-of-
sample fixed effects, and interactions of a treatment indicator with an indicator for each
month of the sample, except for the month immediately prior to the launch of the program in
June 2015, which is represented by the vertical dashed line to the left. The second vertical
dashed line to the right represents the point where alerts stopped being sent after June
2016. The horizontal line represents the mean for the point estimates for all months of the
sample prior to the beginning of the program.



Table 3: Quantile Regression Estimates for Nominal ADC

Panel A: Electricity 1% 5% 10% 25% 50% 75% 90% 95% 99%
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment × Post-Pd. 0.000 0.011 0.047 -0.030 -0.102** -0.219*** -0.293** -0.173 0.026
(0.029) (0.036) (0.035) (0.037) (0.047) (0.073) (0.124) (0.176) (0.303)

Constant 3.023*** 5.511*** 7.555*** 11.979*** 18.650*** 27.890*** 39.017*** 47.013*** 63.264***
(0.013) (0.016) (0.016) (0.017) (0.021) (0.033) (0.056) (0.080) (0.138)

R-squared 0.65 0.77 0.79 0.81 0.81 0.79 0.76 0.73 0.61
Observations 2,007,410 2,007,410 2,007,410 2,007,410 2,007,410 2,007,410 2,007,410 2,007,410 2,007,410
Panel B: Natural Gas 1% 5% 10% 25% 50% 75% 90% 95% 99%

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Treatment × Post-Pd. - - -0.001 -0.003* -0.007** -0.028*** -0.021* -0.051*** -0.009

- - (0.001) (0.002) (0.003) (0.008) (0.013) (0.018) (0.029)
Constant - - 0.128*** 0.481*** 1.154*** 3.086*** 5.014*** 6.143*** 8.121***

- - (0.001) (0.001) (0.002) (0.003) (0.006) (0.008) (0.013)

R-squared - - 0.90 0.87 0.91 0.88 0.80 0.74 0.58
Observations - - 2,032,096 2,032,096 2,032,096 2,032,096 2,032,096 2,032,096 2,032,096
Notes: The unit of analysis is a household and an electricity or natural gas bill. The dependent variable is ADC for either electricity (kWh) or natural gas
(therms) as indicated in the panel headings. All models are unconditional quantile regression models, where the column headings indicate the point in the
distribution for which the model is estimated. Natural gas models are not estimated for the first and fifth percentiles due to the concentration of zeroes at the
bottom of the natural gas consumption distribution. All models include month-of-sample fixed effects and household-by-calendar month fixed effects. Tem-
poral fixed effects are coded based on the month at the end of the billing cycle. Standard errors are clustered by household. Observations weighted by the
number of days in the billing cycle. One, two, and three stars indicate 10 percent, 5 percent, and 1 percent significance, respectively.



Table 4: Quantile Regression Estimates for Relative ADC

Panel A: Electricity 1% 5% 10% 25% 50% 75% 90% 95% 99%
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment × Post-Pd. 0.140 -0.205 -0.285 -0.355** -0.338** -0.466** -1.224*** -1.738*** -2.275*
(0.227) (0.224) (0.187) (0.139) (0.133) (0.218) (0.424) (0.662) (1.263)

Constant 45.008*** 61.846*** 71.415*** 86.219*** 101.454*** 121.024*** 149.311*** 174.271*** 240.049***
(0.187) (0.184) (0.153) (0.114) (0.109) (0.180) (0.350) (0.547) (1.049)

R-squared 0.00 0.00 0.01 0.02 0.03 0.03 0.01 0.01 0.00
Observations 1,148,220 1,148,220 1,148,220 1,148,220 1,148,220 1,148,220 1,148,220 1,148,220 1,148,220
Panel B: Gas 1% 5% 10% 25% 50% 75% 90% 95% 99%

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Treatment × Post-Pd. - - -0.101 -0.202* -0.326*** -0.357*** -0.657*** -0.738 -1.301

- - (0.181) (0.117) (0.103) (0.109) (0.246) (0.472) (1.130)
Constant - - 54.252*** 70.571*** 89.287*** 106.240*** 126.061*** 145.959*** 206.796***

- - (0.147) (0.095) (0.085) (0.090) (0.204) (0.392) (0.939)

R-squared - - 0.06 0.16 0.20 0.12 0.06 0.03 0.01
Observations - - 1,119,977 1,119,977 1,119,977 1,119,977 1,119,977 1,119,977 1,119,977
Notes: The unit of analysis is a household and an electricity or natural gas bill. The dependent variable is relative ADC (where relative is measured as a comparison to
ADC during the same calendar month in the year prior to the start of the HBA program) for either electricity (kWh) or natural gas (therms) as indicated in the panel
headings. All models are estimated with the post-treatment sample. Natural gas models are not estimated for the first and fifth percentiles due to the concentration
of zeroes at the bottom of the natural gas consumption distribution. All models are unconditional quantile regression models, where the column headings indicate the
point in the distribution for which the model is estimated. All models include month-of-sample fixed effects. Temporal fixed effects are coded based on the month at
the end of the billing cycle. Standard errors are clustered by household. Observations weighted by the number of days in the billing cycle. One, two, and three stars
indicate 10 percent, 5 percent, and 1 percent significance, respectively.



Table 5: Estimates of the Effect of the HBA Program on Mean ADC with Income Interaction

Electricity Natural Gas
(1) (2) (3) (4) (5) (6)

Treatment × Post-Pd. -0.106* -0.111*** -0.103*** -0.014** -0.009*** -0.009***
(0.055) (0.038) (0.038) (0.006) (0.003) (0.003)

Treatment Indicator 0.070 0.015
(0.090) (0.009)

Treatment × Post-Pd. × Income 0.023 0.034*** -0.008 -0.002 -0.000 -0.001
(0.029) (0.011) (0.011) (0.002) (0.001) (0.001)

Post-Pd. Indicator 1.171*** -0.326***
(0.045) (0.005)

Income 0.866*** 0.029***
(0.025) (0.002)

Constant 20.369*** 21.184*** 21.181*** 2.181*** 1.976*** 1.976***
(0.074) (0.016) (0.017) (0.008) (0.001) (0.001)

HH FEs No Yes No No Yes No
HH-by-Cal.-Month FEs No No Yes No No Yes
Month-of-Sample FEs No Yes Yes No Yes Yes
Treat. Eff. as % -0.49 -0.52 -0.48 -0.79 -0.52 -0.50

R-squared 0.02 0.77 0.91 0.01 0.79 0.96
Observations 2,144,460 2,144,460 2,144,460 2,167,807 2,167,807 2,167,807
Notes: The unit of analysis is a household and an electricity or natural gas bill. Income is measured at the zip-code level,
de-meaned, and measured in units of $10,000s. The dependent variable is ADC for either electricity (kWh) or natural gas
(therms) as indicated in the heading. All models are linear regression models. Temporal fixed effects are coded based on the
month at the end of the billing cycle. Standard errors clustered by household. Observations are weighted by the number of
days in the billing cycle. One, two, and three stars indicate 10 percent, 5 percent, and 1 percent significance, respectively.



Figure 5: Market Demand and Energy Price. Area abc represents an estimate of the
benefits of the HBA program to consumers when the foregone value of energy consumption
is just marginal to the energy price. Area fghi represents the benefits of the HBA program
to consumers when the foregone value of energy consumption is significantly less than the
energy price. Area abed represents the benefits of the HBA program to consumers when the
foregone value of energy consumption is zero.



Table 6: Upper and Lower Bound Estimates of Consumer Benefits

Assumptions and Parameters:

Annual Electricity Consumption per Household (kwh): 7,820
Average Price of Electricty (cents/kWh): 13.90
Annual Electricity Expenditures per Household (kwh): 1086.98
Annual Electricity Conservation per Customer (kwh) 39.10
Avoided Electricity Expenditures per Household (dollars): 5.43
Residential Electricity Customers: 1,186,195
Annual Natural Gas Consumption per Household (therms): 853
Average Price of Natural Gas (dollars/therm): 1.33
Annual Natural Gas Expenditures per Household (dollars): 1,137.90
Annual Natural Gas Conservation per Customer (therms) 4.26
Avoided Natural Gas Expenditures per Household (dollars): 5.69
Residential Natural Gas Customers: 438,247

Upper Bound Estimates of Consumer Benefits (dollars):

Electricity Benefits per Household 5.43
Natural Gas Benefits per Household 5.69
Electricity Benefits in Aggregate 6,444,851
Natural Gas Benefits in Aggregate 2,493.406
Combined Benefits in Aggregate 8,940,257

Lower Bound Estimates of Consumer Benefits (dollars):

Elec.
Elas.

Elec.
Ben.

per HH.

Elec. Ben.
Agg.

Gas.
Elas.

Gas
Ben.

per HH

Gas Ben.
Agg.

Combined
Ben. Agg.

-0.01 1.36 1,611,713 -0.01 1.42 623,352 2,235,065
-0.05 0.27 322,343 -0.05 0.28 124,670 447,013
-0.10 0.14 161,171 -0.10 0.14 62,335 223,506
-0.15 0.09 107,448 -0.15 0.09 41,557 149,004
-0.20 0.07 80,586 -0.20 0.07 31,168 111,753
-0.25 0.05 64,469 -0.25 0.06 24,934 89,403
-0.30 0.05 53,724 -0.30 0.05 20,778 74,502
-0.35 0.04 46,049 -0.35 0.04 17,810 63,859

Notes: Consumption and customer count data taken from EIA-861 for the utility for the year 2021.
All dollars are inflation adjusted to the year 2021. Avoided expenditures based on estimates from
Table 1. Upper bound estimates assume zero foregone value from conservation and are calculated
as the price of electricity, times the change in consumption per household, times the total number
of customers. Lower bound estimates assume the foregone value from the first unit of conserva-
tion is equal to the price and then declines linearly as a function of the price elasticity. See more
discussion in Section 6.



10.2 Appendix Tables and Figures

A.2.1 The Association between Receiving an Alert and Mean ADC

Table A.1: Estimates of the Association between Receiving an Alert and Mean ADC

ADC Relative ADC
Dependent Variable: Elec. Gas Elec. Gas Elec. Gas Elec. Gas

(1) (2) (3) (4) (5) (6) (7) (8)
Alert - Elec. 4.482*** -0.007*** 32.546*** 2.901***

(0.032) (0.002) (0.169) (0.131)
Alert - Gas. 0.846*** 0.186*** 5.506*** 16.457***

(0.088) (0.009) (0.533) (0.464)
Constant 20.942*** 1.973*** 21.131*** 1.971*** 102.826*** 91.541*** 105.204*** 91.651***

(0.001) (0.000) (0.000) (0.000) (0.071) (0.049) (0.075) (0.049)

Sample Pre+Post Pre+Post Pre+Post Pre+Post Post Post Post Post
HH-by-cal.-month FEs Yes Yes Yes Yes No No No No
Month-of-Sample FEs Yes Yes Yes Yes Yes Yes Yes Yes
Alert Coef. as % 20.87 -0.41 3.94 10.23 - - - -

R-squared 0.91 0.96 0.91 0.96 0.10 0.18 0.03 0.19
Observations 2,144,460 2,167,807 2,144,460 2,167,807 1,143,546 1,085,333 1,143,546 1,085,333
Notes: The unit of analysis is a household and an electricity or natural gas bill. The dependent variable is ADC for either electricity (kWh) or
natural gas (therms) as indicated in the heading. The relative ADC models are estimated with the post-treatment sample. All models are linear
regression models. The alert variables are indicators for having received an alert of the corresponding type the billing cycle. Temporal fixed effects
are coded based on the month at the end of the billing cycle. Standard errors clustered by household. Observations are weighted by the number of
days in the billing cycle. One, two, and three stars indicate 10 percent, 5 percent, and 1 percent significance, respectively.



A.3 Reproducing Results from Main Analysis with Sample that Includes Outliers

Table A.2: Estimates of the Effect of the HBA Program on Mean ADC - Outliers Included

Electricity Natural Gas
(1) (2) (3) (4) (5) (6)

Treatment × Post-Pd. -0.102 -0.093** -0.083* -0.015** -0.008** -0.008**
(0.065) (0.043) (0.044) (0.006) (0.004) (0.003)

Treatment Indicator -0.115 0.009
(0.120) (0.012)

Post-Pd. Indicator 1.210*** -0.382***
(0.054) (0.005)

Constant 21.147*** 21.854*** 21.849*** 2.332*** 2.086*** 2.086***
(0.101) (0.019) (0.019) (0.010) (0.002) (0.001)

HH FEs No Yes No No Yes No
HH-by-Cal.-Month FEs No No Yes No No Yes
Month-of-Sample FEs No Yes Yes No Yes Yes
Treat. Eff. as % -0.46 -0.42 -0.37 -0.76 -0.42 -0.44

R-squared 0.00 0.78 0.92 0.01 0.76 0.96
Observations 2,187,669 2,187,669 2,187,669 2,189,624 2,189,624 2,189,624
Notes: The unit of analysis is a household and an electricity or natural gas bill. The dependent variable is ADC for
either electricity (kWh) or natural gas (therms) as indicated in the heading. All models are linear regression mod-
els. Temporal fixed effects are coded based on the month at the end of the billing cycle. Standard errors clustered by
household. Observations are weighted by the number of days in the billing cycle. One, two, and three stars indicate
10 percent, 5 percent, and 1 percent significance, respectively.
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Figure A.1: Estimates of the Effect of the HBA Program on Mean ADC by Month
- Outliers Included. Estimates are based on a linear regression of ADC on household
fixed effects, month-of-sample fixed effects, and interactions of a treatment indicator with
an indicator for each month-of-sample, except for the month immediately prior to the launch
of the program in June 2015, which is represented by the vertical dashed line to the left.
The second vertical dashed line to the right represents the point where alerts stopped being
dispensed after June 2016. The horizontal line represents the mean for the point estimates
for all months of the sample prior to the beginning of the program.



Table A.3: Quantile Regression Estimates for Nominal ADC - Outliers Included

Panel A: Electricity 1% 5% 10% 25% 50% 75% 90% 95% 99%
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment × Post-Pd. 0.003 -0.007 0.041 -0.030 -0.102** -0.231*** -0.248* -0.054 -0.011
(0.043) (0.039) (0.036) (0.037) (0.047) (0.074) (0.131) (0.205) (0.693)

Constant 2.207*** 5.083*** 7.279*** 11.856*** 18.678*** 28.227*** 40.209*** 49.695*** 77.861***
(0.019) (0.018) (0.017) (0.017) (0.021) (0.033) (0.060) (0.093) (0.315)

R-squared 0.70 0.78 0.80 0.81 0.81 0.80 0.78 0.77 0.77
Observations 2,053,498 2,053,498 2,053,498 2,053,498 2,053,498 2,053,498 2,053,498 2,053,498 2,053,498
Panel B: Natural Gas 1% 5% 10% 25% 50% 75% 90% 95% 99%

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Treatment × Post-Pd. - - -0.000 -0.003* -0.007** -0.024*** -0.019 -0.045** 0.039

- - (0.001) (0.002) (0.004) (0.008) (0.013) (0.021) (0.063)
Constant - - 0.135*** 0.487*** 1.182*** 3.183*** 5.189*** 6.515*** 9.646***

- - (0.001) (0.001) (0.002) (0.003) (0.006) (0.009) (0.029)

R-squared - - 0.90 0.87 0.91 0.88 0.81 0.77 0.74
Observations - - 2,055,651 2,055,651 2,055,651 2,055,651 2,055,651 2,055,651 2,055,651
Notes: The unit of analysis is a household and an electricity or natural gas bill. The dependent variable is ADC for either electricity (kWh) or natural gas
(therms) as indicated in the panel headings. All models are unconditional quantile regression models, where the column headings indicate the point in the
distribution for which the model is estimated. Natural gas models are not estimated for the first and fifth percentiles due to the concentration of zeroes at the
bottom of the natural gas consumption distribution. All models include month-of-sample fixed effects and household-by-calendar month fixed effects. Tem-
poral fixed effects are coded based on the month at the end of the billing cycle. Standard errors are clustered by household. Observations weighted by the
number of days in the billing cycle. One, two, and three stars indicate 10 percent, 5 percent, and 1 percent significance, respectively.



Table A.4: Quantile Regression Estimates for Relative ADC - Outliers Included

Panel A: Electricity 1% 5% 10% 25% 50% 75% 90% 95% 99%
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment × Post-Pd. 1.154* 0.064 -0.178 -0.324** -0.333** -0.520** -1.516*** -2.798*** -11.860**
(0.626) (0.301) (0.216) (0.146) (0.136) (0.230) (0.509) (0.945) (5.871)

Constant 32.405*** 58.516*** 69.818*** 85.736*** 101.422*** 121.628*** 152.434*** 183.118*** 321.230***
(0.516) (0.248) (0.177) (0.119) (0.111) (0.190) (0.421) (0.785) (4.912)

R-squared 0.00 0.00 0.01 0.02 0.03 0.03 0.01 0.01 0.00
Observations 1,193,975 1,193,975 1,193,975 1,193,975 1,193,975 1,193,975 1,193,975 1,193,975 1,193,975
Panel B: Gas 1% 5% 10% 25% 50% 75% 90% 95% 99%

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Treatment × Post-Pd. - - -0.136 -0.238** -0.349*** -0.413*** -0.910*** -1.305* -15.332***

- - (0.177) (0.116) (0.104) (0.113) (0.312) (0.680) (5.563)
Constant - - 54.654*** 71.020*** 89.847*** 107.045*** 128.921*** 153.274*** 286.522***

- - (0.144) (0.095) (0.085) (0.093) (0.259) (0.566) (4.651)

R-squared - - 0.06 0.17 0.20 0.12 0.06 0.03 0.00
Observations - - 1,141,558 1,141,558 1,141,558 1,141,558 1,141,558 1,141,558 1,141,558
Notes: The unit of analysis is a household and an electricity or natural gas bill. The dependent variable is relative ADC (where relative is measured as a comparison to
ADC during the same calendar month in the year prior to the start of the HBA program) for either electricity (kWh) or natural gas (therms) as indicated in the panel
headings. All models are estimated with the post-treatment sample. Natural gas models are not estimated for the first and fifth percentiles due to the concentration
of zeroes at the bottom of the natural gas consumption distribution. All models are unconditional quantile regression models, where the column headings indicate the
point in the distribution for which the model is estimated. All models include month-of-sample fixed effects. Temporal fixed effects are coded based on the month at
the end of the billing cycle. Standard errors are clustered by household. Observations weighted by the number of days in the billing cycle. One, two, and three stars
indicate 10 percent, 5 percent, and 1 percent significance, respectively.



A.4 Quantile Regression Estimates for Relative ADC with Income Interaction

Table A.5: Quantile Regression Estimates for Relative ADC with Income Interaction

Panel A: Electricity 1% 5% 10% 25% 50% 75% 90% 95% 99%
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Treatment × Post-Pd. 0.132 -0.216 -0.293 -0.359*** -0.336** -0.456** -1.200*** -1.702*** -2.228*
(0.227) (0.223) (0.187) (0.139) (0.133) (0.218) (0.422) (0.661) (1.261)

Treatment × Post-Pd. × Income -0.023 -0.034 -0.054 -0.026 -0.056 -0.134 -0.146 -0.221 0.082
(0.112) (0.112) (0.096) (0.072) (0.069) (0.110) (0.207) (0.324) (0.600)

Income (Zip-code-level, median) 0.688*** 0.903*** 0.730*** 0.328*** -0.133** -0.802*** -1.895*** -2.785*** -3.835***
(0.091) (0.091) (0.078) (0.059) (0.057) (0.091) (0.173) (0.273) (0.502)

Constant 45.013*** 61.852*** 71.420*** 86.221*** 101.454*** 121.018*** 149.298*** 174.252*** 240.023***
(0.187) (0.183) (0.153) (0.114) (0.109) (0.179) (0.348) (0.546) (1.047)

R-squared 0.00 0.00 0.01 0.02 0.03 0.03 0.02 0.01 0.00
Observations 1,148,220 1,148,220 1,148,220 1,148,220 1,148,220 1,148,220 1,148,220 1,148,220 1,148,220
Panel B: Gas 1% 5% 10% 25% 50% 75% 90% 95% 99%

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Treatment × Post-Pd. - - -0.105 -0.204* -0.328*** -0.358*** -0.656*** -0.737 -1.300

- - (0.180) (0.117) (0.103) (0.109) (0.246) (0.472) (1.130)
Treatment × Post-Pd. × Income - - 0.015 -0.001 0.027 -0.006 0.022 -0.131 -0.257

- - (0.092) (0.059) (0.052) (0.055) (0.125) (0.239) (0.584)
Income (Zip-code-level, median) - - 0.771*** 0.303*** 0.326*** 0.168*** -0.228** -0.258 0.047

- - (0.075) (0.048) (0.043) (0.046) (0.104) (0.198) (0.480)
Constant - - 54.252*** 70.572*** 89.288*** 106.241*** 126.061*** 145.958*** 206.796***

- - (0.147) (0.095) (0.085) (0.090) (0.204) (0.392) (0.939)

R-squared - - 0.06 0.16 0.20 0.12 0.06 0.03 0.01
Observations - - 1,119,977 1,119,977 1,119,977 1,119,977 1,119,977 1,119,977 1,119,977
Notes: The unit of analysis is a household and an electricity or natural gas bill. Income is measured at the zip-code level, de-meaned, and measured in units of $10,000s. The
dependent variable is relative ADC (where relative is measured as a comparison to ADC during the same calendar month in the year prior to the start of the HBA program) for ei-
ther electricity (kWh) or natural gas (therms) as indicated in the panel headings. All models are estimated with the post-treatment sample. Natural gas models are not estimated
for the first and fifth percentiles due to the concentration of zeroes at the bottom of the natural gas consumption distribution. All models are unconditional quantile regression
models, where the column headings indicate the point in the distribution for which the model is estimated. All models include month-of-sample fixed effects. Temporal fixed ef-
fects are coded based on the month at the end of the billing cycle. Standard errors are clustered by household. Observations weighted by the number of days in the billing cycle.
One, two, and three stars indicate 10 percent, 5 percent, and 1 percent significance, respectively.
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